Dual Functions of the RFTS Domain of Dnmt1 in Replication-Coupled DNA Methylation and in Protection of the Genome from Aberrant Methylation
نویسندگان
چکیده
In mammals, DNA methylation plays important roles in embryogenesis and terminal differentiation via regulation of the transcription-competent chromatin state. The methylation patterns are propagated to the next generation during replication by maintenance DNA methyltransferase, Dnmt1, in co-operation with Uhrf1. In the N-terminal regulatory region, Dnmt1 contains proliferating cell nuclear antigen (PCNA)-binding and replication foci targeting sequence (RFTS) domains, which are thought to contribute to maintenance methylation during replication. To determine the contributions of the N-terminal regulatory domains to the DNA methylation during replication, Dnmt1 lacking the RFTS and/or PCNA-binding domains was ectopically expressed in embryonic stem cells, and then the effects were analyzed. Deletion of both the PCNA-binding and RFTS domains did not significantly affect the global DNA methylation level. However, replication-dependent DNA methylation of the differentially methylated regions of three imprinted genes, Kcnq1ot1/Lit1, Peg3, and Rasgrf1, was impaired in cells expressing the Dnmt1 with not the PCNA-binding domain alone but both the PCNA-binding and RFTS domains deleted. Even in the absence of Uhrf1, which is a prerequisite factor for maintenance DNA methylation, Dnmt1 with both the domains deleted apparently maintained the global DNA methylation level, whilst the wild type and the forms containing the RFTS domain could not perform global DNA methylation under the conditions used. This apparent maintenance of the global DNA methylation level by the Dnmt1 lacking the RFTS domain was dependent on its own DNA methylation activity as well as the presence of de novo-type DNA methyltransferases. We concluded that the RFTS domain, not the PCNA-binding domain, is solely responsible for the replication-coupled DNA methylation. Furthermore, the RFTS domain acts as a safety lock by protecting the genome from replication-independent DNA methylation.
منابع مشابه
The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1.
Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the la...
متن کاملRFTS-deleted DNMT1 enhances tumorigenicity with focal hypermethylation and global hypomethylation.
Site-specific hypermethylation of tumor suppressor genes accompanied by genome-wide hypomethylation are epigenetic hallmarks of malignancy. However, the molecular mechanisms that drive these linked changes in DNA methylation remain obscure. DNA methyltransferase 1 (DNMT1), the principle enzyme responsible for maintaining methylation patterns is commonly dysregulated in tumors. Replication foci ...
متن کاملI-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen
Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملIntrinsic and extrinsic regulation of DNA methylation during malignant transformation
ii ACKNOWLEDGMENTS First, I would like to thank my mentor, Dr. Charles Brenner. He provided me a great opportunity to get excellent training in his lab with ample freedom and full support. He introduced me to the interesting DNA methylation field, which I plan to keep focusing on in the future. Finally, I would like to thank my family for their patience and encouragement. I appreciate everythin...
متن کامل